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Abstract

In medical image analysis, machine learning models can help healthcare professionals
with the diagnosing and monitoring of lung abnormalities, which are prevalent and diverse in
nature. This paper presents a comprehensive approach to lung abnormality detection using deep
learning techniques. The proposed methodology leverages the power of convolutional neural
networks (CNNs) to accurately and efficiently identify the presence of various lung
abnormalities from chest radiographs. The research focuses on a dataset comprising a diverse
range of lung abnormalities. Deep learning architectures have been used to process 1,740 chest
radiographs. The model yielded an accuracy of 93.10% after various preprocessing steps to
ensure quality, even with a relatively small sample size. The results demonstrate that deep
learning can effectively identify individuals with lung disease, streamlining the process of
diagnosis even in the absence of direct medical supervision. This procedure holds the potential to
enhance personalized prevention and treatment approaches, thereby contributing to life-saving
measures.

1 Introduction

Medical imaging is critical in the diagnosis of disease. Through the precise visualization
of internal anatomical structures, techniques like computed tomography (CT) scans and chest
X-rays have revolutionized disease diagnosis and treatment planning [1][2]. Among the
numerous medical applications, the detection of lung abnormalities emerges as a task of
paramount significance.

Lung abnormalities encompass a wide spectrum of conditions. Timely and accurate
identification of these abnormalities is vital for patient care, as it directly influences treatment
strategies and clinical outcomes [3]. However, the intricate anatomy of the lungs, coupled with
the subtlety of pathological variations, presents challenges for medical professionals in
interpreting images and making precise diagnoses [4].

In response to these challenges, machine learning technologies have emerged as a
transformative diagnosis technique in medical imaging. These technologies offer the promise of
enhancing the diagnostic accuracy and efficiency of lung abnormality detection. By training on
large datasets of medical images, machine learning models can learn intricate patterns and
nuances that may elude human observation [5]. Furthermore, the model’s automatic functionality



enables convenient and timely identification of lung diseases. Although not a substitute for
professional medical diagnosis, the model is well-suited for individual screenings [6].

Here, we apply convolutional neural networks for lung abnormality detection, providing
insights into the current landscape, methodologies, and empirical results that underscore their
potential in transforming medical practice. Notably, while existing papers predominantly focus
on devising segmentation and detection algorithms, we incorporate outlier data identification
through lung segmentation masks. This innovative integration underscores the importance of
data quality within medical image analysis.

2 Method

2.1. Lung segmentation
Lung segmentation was done by obtaining a dataset of lungs and their corresponding

ground truth masks, applying pre-processing transformations, and training a U-Net model to
segment the lungs.

The dataset used for lung segmentation has been publicly documented in the U.S.
National Library of Medicine [7] and originates from two sources. The radiographic images have
been amassed in partnership with the Department of Health and Human Services at Montgomery
County, Maryland, as well as Shenzhen No. 3 People’s Hospital located in Guangdong Medical
College, Shenzhen, China. Both sets contain manually segmented lung masks by radiologists for
evaluation. In total, 5,290 pairs of chest X-ray images and their corresponding lung masks have
been collected for the process of lung segmentation.

Contrast normalization was performed by expanding the intensity value range of the
image to encompass a predefined span of values. The application of this filter contributed to an
elevated distinction between lung and bone constituents. Subsequently, the gaussian blurring
transformation was employed, entailing the application of a mathematical function to the image.
This imparted a gentle blurring effect, effectively mitigating noise and finer details within the
image. Additionally, median filtering was applied to further eliminate noise. This entailed the
exclusion of pixels with luminosities that substantially deviate from neighboring pixels,
subsequently replacing the central pixel with the median brightness value derived from the
examined pixels. Ultimately, the images were resized to dimensions of 256 by 256 pixels,
ensuring uniformity in model training while balancing computational efficiency with loss of
image quality.

The dataset encompassed a diverse collection of 5,290 images. To prevent overfitting and
to assess the model's performance, the dataset was divided into an 80% training subset and a
20% testing subset.

For evaluating the model’s performance and steering the training process, the Dice
coefficient loss function was chosen. It is based on the Dice coefficient, also known as F1 score,
a statistical formula quantifying the similarity of two samples. It is defined as twice the area of
the intersection of A and B, divided by the sum of the areas of A and B. In the lung segmentation



task at hand, minimizing this loss function promotes the accurate alignment of predicted and
actual segmentations.

In compiling the model, a batch size of 16 was adopted for over 20 epochs, optimizing
the utilization of computational resources while facilitating efficient weight updates.
Furthermore, the Adam optimizer was employed. Adam's adaptive learning rate and
momentum-based strategies expedited convergence, enabling efficient weight updates across the
network's layers. A learning rate of 1e-4 was experimentally chosen in order to balance
convergence speed with overshooting.

2.2. Identifying outlier data
Identifying outlier image data is necessary to ensure the quality of the overarching step,

detecting lung abnormality. To weed out such samples, a two-step algorithm was used taking into
account the lung segmentation masks.

First, the mask was cleaned up using morphological functions. The opening operation
from the cv2 library helps to separate connected components, fill gaps, and smooth the mask. It
removes small noise and fine structures while preserving the overall shape of the larger objects.
Then, the clean_up_small_objects function from Scikit-image was applied to eliminate artifacts
that may not be relevant to the analysis.

After refining the mask, a criterion was designed to detect atypical X-ray samples. First,
if the region with the greatest area comes within 60% of that of exactly one other region, then the
image passed. In addition, the largest component had to measure no greater than 20,000 pixels
(out of a possible 65,536 pixels in a 256 by 256 image) for clearance.

2.3. Region of interest (ROI) extraction
The predicted lung mask was used to make a “bounding box”, formed by taking four

points: the minimum and maximum horizontal and vertical coordinates of the highlighted areas
in the mask. These points form a box that tightly encloses desired regions of the segmented
mask. To capture areas immediately around the lungs, padding was added uniformly for each
side of the bounding box by a value of 25 pixels. This region was then resized to the desired 256
by 256 pixels, without necessarily preserving original aspect ratios. These transformations were
applied to form the corresponding cropped region from the original image, resized to match the
dimensions of the ROI.

2.4. Lung abnormality detection
The dataset used for lung abnormality detection was sourced from a Kaggle competition,

provided by the Vingroup, a data science and artificial intelligence research group based in
Vietnam [8]. All images were annotated by experienced radiologists for the presence of 14
critical radiographic abnormalities as listed below:

● Aortic enlargement
● Atelectasis



● Calcification
● Cardiomegaly
● Consolidation
● ILD
● Infiltration
● Lung Opacity
● Nodule/Mass
● Other lesion
● Pleural effusion
● Pleural thickening
● Pneumothorax
● Pulmonary fibrosis

In total, 2,100 images have been used prior to filtering out poor data.
Similar to the previous section on pre-processing lung images for segmentation (Section

2.1.2), analogous techniques have been employed to standardize and optimize the model training
process. Contrast normalization, gaussian filter, and median filter have all been used to enhance
image contrast and reduce noise. Furthermore, the images were resized to dimensions of 512 by
512 pixels in order to compromise between memory storage and maintaining high image quality.
This particular resizing will be important for extracting the ROI as its dimensions will not exceed
that of the original image. In addition, the procedure mentioned in Section 2.2 has been applied
to filter out unwanted image data.

The dataset consisted of 1,740 images, with 80% allocated for the training subset and a
20% for the testing subset.

The loss function chosen for this stage was binary cross-entropy with logits loss, a
popular choice for binary classification tasks. It first applies the sigmoid activation function,
which converts raw outputs to a probability distribution between 0 and 1. Then, the values are
fed to a standard binary cross-entropy loss function, which calculates the difference between
predicted probabilities and actual labels. This measures how well a model's predictions match the
true outcomes, facilitating the accurate classification of lung abnormality.

In compiling the model, a batch size of 16 was adopted for over 20 epochs, optimizing
the utilization of computational resources while facilitating efficient weight updates. The Adam
optimizer was used with a learning rate of 1e-3.

3 Results

3.1. U-Net achieves highly accurate lung segmentation
The X-ray images have been amassed in partnership with the Department of Health and

Human Services at Montgomery County, Maryland, as well as Shenzhen No. 3 People’s Hospital
located in Guangdong Medical College, Shenzhen, China. The deliberate selection of these two
sources contributes to the diversification of patient data across varied geographic regions.



The U-Net, a widely adopted CNN architecture, plays a pivotal role in the lung
segmentation process due to its aptitude for precise feature extraction and spatial
contextualization. Originally proposed for biomedical image segmentation, the U-Net
architecture has demonstrated its efficacy across various segmentation tasks, making it a suitable
choice for delineating lung structures within medical images [9].

In the assessment of lung segmentation efficacy, three key evaluation metrics have been
employed: binary accuracy, dice coefficient (also known as F1 score), and the area under the
receiver operating characteristic curve (AUROC).

Binary accuracy gauges the proportion of accurately predicted pixel values within the
binary segmentation mask compared to the ground truth mask. This metric is determined by
tallying the count of correctly identified pixels, both foreground (lung) and background
(non-lung), and dividing it by the total count of pixels in the mask. Binary accuracy provides a
comprehensive assessment of the model's performance with respect to pixel-level classification.
In the experiment, the calculated binary accuracy achieved a value of 97.73%.

The dice coefficient, often referred to as the F1 score, quantifies the agreement between
the predicted segmentation and the ground truth mask. This metric is calculated by assessing the
overlap between the two masks. The dice coefficient provides insights into the model's ability to
balance precision and recall, making it a valuable measure for segmentation tasks. In the
experimentation, the computed dice coefficient yielded a value of 95.91%.

The AUROC assesses the model's ability to discriminate between foreground and
background pixels across various probability thresholds. This metric captures the trade-off
between true positive and false positive rates and lies between 0 and 1, where a perfect AUROC
score of 1 indicates flawless discrimination, while a score of 0.5 signifies random guessing. The
computed AUROC achieved a value of 99.82% (Figure 1).

Figure 1: Lung segmentation AUROC curve



A significant portion of the predicted masks closely resemble their corresponding ground
truth counterparts, underscoring the model's substantial accuracy (Figure 2). Out of the 1,038
validation images, analysis of the worst six predictions by dice coefficient revealed that those
X-rays have been taken too far or have been taken at unusual angles (Figure 3). Furthermore,
inverted images, such as the one in the last column, became a more prevalent issue in the process
of lung abnormality detection.

Figure 2: Sample predicted lung masks



Figure 3: Six worst predicted lung masks by dice coefficient

3.2. Effective outlier data identification
The two-part criterion designed to detect atypical X-ray samples have effectively weeded

out undesired data samples. First, if the region with the greatest area comes within 60% of that of
exactly one other region, then the image passed. This case accounted for the vast majority of
X-ray images, as accurately predicted lung segmentations reliably fulfilled the requirement.

In cases where the segmentation yielded connected lung structures, despite applying
morphological operations, the largest component had to measure no greater than 20,000 pixels
(out of a possible 65,536 pixels in a 256 by 256 image) for clearance. This condition effectively
filtered out chest X-ray scans that did not match the anticipated color distribution of bright bone
matter and dark air and lungs.

In the Vingroup dataset, 360 out of 2,100 images have been removed from the dataset, the
vast majority of which did not match the expected color scheme.

3.3. ROI mitigates confounding effects
Confounding effects refer to external factors or variables that can influence the observed

outcomes, potentially leading to misleading interpretations or conclusions [10]. These effects can
inadvertently impact the accuracy or reliability of the predictions in the subsequent step, lung
abnormality detection. Addressing confounding effects is crucial to ensure that the performance
metrics of the model will accurately reflect their true capabilities without irrelevant bias. In the



task of lung abnormality detection, confounding effects could arise from various sources, such as
variations in image quality or radiographic watermarks, possibly introducing variability in the
data that the model processes. As a result, its predictions could be influenced by these extraneous
factors rather than solely reflecting its ability to accurately identify abnormal lungs.

To mitigate these effects, the ROI has been created to only focus on relevant areas,
namely the lung and its immediately surrounding areas. This region was extracted by performing
a series of image manipulation techniques with the aid of predicted lung guidelines.

3.4. ResNet-18 achieves high lung abnormality detection performance
ResNet-18, short for Residual Network-18, is a CNN architecture that has exhibited

exceptional performance in various computer vision tasks [11]. ResNet-18 offers a solution to the
problem of vanishing gradients in deep neural networks, enabling the training of significantly
deeper networks without degradation of performance.

The evaluation of the lung abnormality model is crucial in understanding its effectiveness
in identifying lung abnormalities and distinguishing between normal and abnormal lung images.
The key performance metrics include the AUROC, binary accuracy, specificity, and sensitivity.

Binary accuracy measures the proportion of correctly predicted samples among all
samples. The model achieved a binary accuracy of 93.10%, highlighting its high accuracy in
classifying lung images as normal or abnormal. This metric provides a clear indication of the
model's ability to make accurate predictions on the dataset.

The model achieved an AUROC score of 95.21% (Figure 4), indicating its strong ability
to distinguish between normal and abnormal lung images. A higher AUROC score signifies a
better overall performance of the model in terms of correctly classifying samples from both
classes.

Figure 4: Lung abnormality detection AUROC curve



Specificity, also known as the true negative rate, represents the proportion of correctly
predicted negative (normal) samples among all actual negative samples. A higher specificity
value indicates a lower rate of false positives, thus highlighting the model's capability to
minimize misclassifications of normal cases as abnormal. The model demonstrated a specificity
of 97.39%.

Sensitivity, also referred to as the true positive rate or recall, measures the proportion of
correctly predicted positive (abnormal) samples among all actual positive samples. A higher
sensitivity value underscores the model's capability to detect true positive cases effectively. The
model exhibited a sensitivity of 78.75%.

The presented heatmaps offer a visual representation of the model's attention to different
regions, depicted through varying intensities of color. Deeper shades indicate higher significance.
Notably, the model assigns considerable importance to the contour of the right lung, particularly
in proximity to the heart (Figure 5, 6).

Figure 5: Lung abnormality detection heatmap for normal lungs



Figure 6: Lung abnormality detection heatmap for abnormal lungs

4 Discussion

The presented work revolves around the utilization of deep learning architectures for the
identification of lung abnormalities from chest radiographs. The achieved accuracy of 93.10%
underscores the model's proficiency in recognizing lung disease instances within the dataset. The
success of the model can be attributed to its capability to learn complex patterns and features
from the radiographic images, which are often imperceptible to the human eye.

The high AUROC score of 95.21% further accentuates the model's robustness in
distinguishing between normal and abnormal cases. This performance metric is indicative of the
model's effective classification ability.

The calculated sensitivity of 78.75% highlights an important aspect of the model's
performance in the context of lung abnormality detection. Sensitivity, also known as the true
positive rate or recall, measures the proportion of actual positive cases correctly identified by the
model. In the context of medical diagnostics, sensitivity is crucial as it indicates the model's
ability to correctly identify individuals with lung abnormalities, ensuring that genuine cases are
not missed.

The observed sensitivity implies that the model successfully identified approximately
78.75% of the actual lung abnormality cases present in the dataset. However, the remaining
21.25% of true positive cases were not detected by the model, which raises concerns as missed
detections could potentially delay timely medical intervention for patients with lung
abnormalities [12].



A sensitivity of 78.75% suggests room for improvement in the model's ability to detect
lung abnormalities, especially in cases where subtle or atypical signs are present. Strategies to
enhance sensitivity involve adjusting the classification threshold or expanding the dataset
through the means of obtaining additional data or incorporating data augmentation techniques
[13]. Furthermore, employing more complex architectures or fine-tuning the existing model
might allow it to capture intricate features that it currently misses.

Moreover, the generated heatmaps provide insight into the areas of interest that the model
deems significant during classification. The model's emphasis on the outline of the right lung,
particularly near the heart, is indicative of its ability to recognize patterns of abnormalities often
associated with specific anatomical regions. Nonetheless, the variation in heatmap intensities
highlights potential areas for refinement and further model enhancement. Introducing techniques
like Grad-CAM++ might offer improved visualizations by focusing on higher-level features and
allowing for better localization of abnormalities [14].

The automatic and timely diagnosis potential of the model is noteworthy. However, it is
crucial to emphasize that the model's predictions should serve as complementary information to
professional medical diagnoses rather than a substitute. Clinical expertise remains vital in the
interpretation of results and decision-making regarding patient care [15].

In conclusion, this study presents a promising application of deep learning in lung
abnormality detection. The achieved results underscore the model's potential utility in assisting
medical professionals and enhancing diagnostic processes.
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