• Lee, H., Troschel, F.M., Tajmir, S. et al. Pixel-Level Deep Segmentation: Artificial Intelligence Quantifies Muscle on Computed Tomography for Body Morphometric Analysis. J Digit Imaging (2017). doi:10.1007/s10278-017-9988-z.
  • Cho J, Lee E, Lee H, Liu B, Li X, Tajmir S, Sahani D, Do S. Machine Learning Powered Automatic Organ Classification for Patient Specific Organ Dose Estimation. Society for Imaging Informatics in Medicine. Vol 2017. ; 2017.
  • Lee H, Rogers J, Cho J, Daye D, Mishra V, Choy G, Tajmir S, Lev M, Do S. Machine Intelligence for Accurate X-ray Screening and Read-out Prioritization: PICC line Detection Study. Society for Imaging Informatics in Medicine. Vol 2017. Pittsburgh, PA ; 2017.
  • Puchner SB, Ferencik M, Maehara A, Stolzmann P, Ma S, Do S, Kauczor H-U, Mintz GS, Hoffmann U, Schlett CL. Iterative Image Reconstruction Improves the Accuracy of Automated Plaque Burden Assessment in Coronary CT Angiography: A Comparison With Intravascular Ultrasound . American Journal of Roentgenology. 2017;2018 :1-8.
  • Lee H, Tajmir S, Lee J, Zissen M, Yeshiwas BA, Alkasab TK, Choy G, Do S. Fully Automated Deep Learning System for Bone Age Assessment. Journal of Digital Imaging. 2017;2017 :1-15.
  • Leonardo I. Valentin MD, Colin McCarthy MD, Synho Do PD, Efren Flores MD, Raul Uppot MD. Predicting multidisciplinary tumor board recommendations: Initial experience with machine learning in interventional oncology. Journal of Vascular and Interventional Radiology [Internet]. 2017;28 (2) :S19-S20.

admin • December 18, 2018

Previous Post

Next Post